ТРАНСФОРМАТОРЫ ТМГ12 класса энергосбережения Х2К1

Решая актуальные вопросы энергосбережения, мы предлагаем разработку - трансформаторы ТМГ12 мощностью 250 ... 1250 кВ·А. *Уровень потерь холостого хода и короткого замыкания* в данной серии трансформаторов установлен в соответствии с рекомендациями Европейского комитета электротехнической стандартизации (CENELEC) и снижен (по сравнению с трансформаторами других серий, а также трансформаторами других производителей), что позволяет существенно уменьшить затраты в процессе эксплуатации оборудования. При этом улучшены шумовые характеристики трансформаторов.

Трехфазные масляные трансформаторы ТМГ12 предназначены для преобразования электроэнергии в сетях энергосистем и потребителей электроэнергии в условиях наружной или внутренней установки умеренного (от плюс 40 до минус 45 °C) или холодного (от плюс 40 до минус 60 °C) климата. Окружающая среда невзрывоопасная, не содержащая пыли в концентрациях, снижающих параметры изделий в недопустимых пределах. Трансформаторы не предназначены для работы в условиях тряски, вибрации, ударов, в химически активной среде. Высота установки над уровнем моря не более 1000 м.

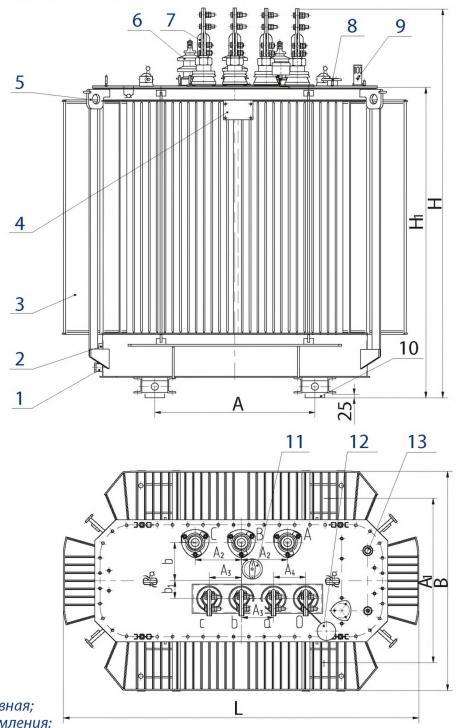
Номинальная частота 50 Гц. Регулирование напряжения осуществляется в диапазоне до ± 5 % *на полностью отключенном трансформаторе* (ПБВ) переключением ответвлений обмотки ВН ступенями по 2,5 %.

Согласно ГОСТ 11677, предельные отклонения технических параметров трансформаторов составляют: напряжение короткого замыкания ±10%; потери короткого замыкания на основном ответвлении +10%; потери холостого хода +15%; полная масса +10%.

Трансформаторы ТМГ12 *герметичного исполнения, без маслорасширителей.* Температурные изменения объема масла компенсируются изменением объема гофров бака за счет упругой их деформации.

Для контроля уровня масла в трансформаторах предусмотрен маслоуказатель поплавкового типа. По заказу потребителя для контроля внутреннего давления в баке и сигнализации в случае превышения им допустимых величин в трансформаторах, размещаемых в помещении, предусматривается установка электроконтактного мановакуумметра. Для измерения температуры верхних слоев масла и управления в нешними электрическими цепями трансформаторы предназначенные для эксплуатации в помещении или под навесом, по заказу потребителя комплектуются манометрическим сигнализирующим термометром.

Вводы и отводы нейтрали обмоток НН трансформаторов рассчитаны на продолжительную нагрузку током, равным 100 % номинального тока обмотки НН.

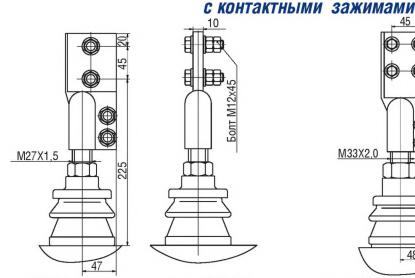

Трансформаторы комплектуются транспортными роликами для перемещения трансформатора в продольном и поперечном направлениях.

Технические характеристики трансформаторов ТМГ12 Схема и группа соединения обмоток - У/Ун-0, Д/Ун-11, напряжение НН - 0,4 кВ

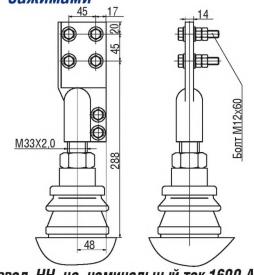
Тип трансформатора	Номинальное напряжение, кВ		Вт пря		На- пря- жение	Коррект. уровень звуковой	Размеры, мм						Масса, кг							
трансформатора	кВ•А	ВН	НН	X.X.	К.З.	к.з., %	мошиости.	L	В	Н	H ₁	A	A ₁	A ₂	$\mathbf{A}_{_{3}}$	A ₄	Ь	b ₁	масла	полная
ТМГ12-250/10-У1(ХЛ1)	250	6; 6,3; 10	0,4	425	3250	4,5	55	1170	790	1460	1195	550	550	200	150	150	1.40	120	225	1000
ТМГ12-250/15-У1(ХЛ1)	250	15	0,1	423	3230	7,5	33	1170	750	1595	1173	330	330		150	150	140	120	223	1000
ТМГ12-400/10-У1(ХЛ1)	400	6; 6,3; 10	0,4	610	4600	4,5	58	1330	850	1635	1370	660	660	265	150	150	140	105	325	1370
ТМГ12-400/15-У1(ХЛ1)	700	15	0,1	010	1000	7,5	30	1550	050	1770	1370	1370 660	000	203	150	150	170	103	323	1370
ТМГ12-630/10-У1(ХЛ1)	630	6; 6,3; 10	0,4	800	6750	5,5	61	1390	1000	1710	1400	820	820	230	135	135	170	160	440	1870
ТМГ12-1000/10-У1(ХЛ1)	1000	6; 6,3; 10	0,4	1100	10500	5,5	64	1600	1000	1970	1595	820	820	230	135	135	160	150	720	2820
ТМГ12-1250/10-У1(ХЛ1)	1250	6; 6,3; 10	0.4	1350	13250	6,0	65	1800	1110	2000	1655	820	820	230	160	160	160	90	860	3630
ТМГ12-1250/15-У1(ХЛ1)	1230	15	0,4	1530	15250	0,0	05	1000	1110	2070	1000	020	020	250	100	100	100	70	000	5050

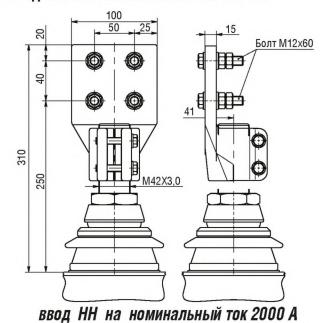
Трансформаторы масляные герметичные классов напряжения до 35 кВ

Трансформаторы ТМГ12 мощностью 250 ... 1250 кВ•А

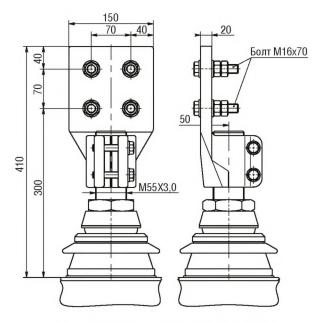


- 1 пробка сливная;
- 2 зажим заземления;
- 3-бак*;
- 4 табличка;
- 5 серьга для подъёма трансформатора;
- 6 ввод ВН;
- 7 ввод НН;
- 8 патрубок для заливки масла;
- 9 маслоуказатель;
- 10 ролик транспортный;
- 11 переключатель;
- 12 пробивной предохранитель (устанавливается по заказу потребителя);
- 13 гильза для стеклянного термометра и термобаллона манометрического термометра.
- * графика рисунка соответствует трансформатору мощностью 1250 кВ•А

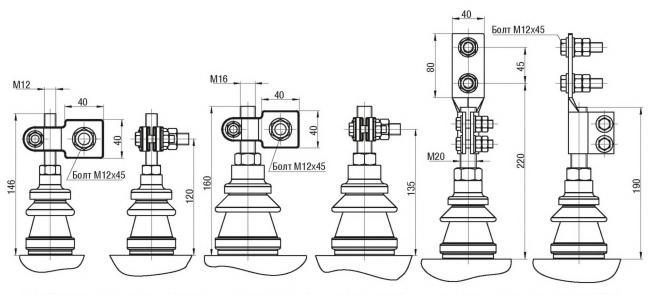

Вводы НН для трансформаторов серий ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ12, ТМГ21 ТМГ32, ТМГ33, ТМГ35, ТМЭГ, ТМБГ, ОМ, ОМГ, ОМП, ТМТО


на номинальный ток 100 А на номинальный ток 250 А на номинальный ток 400 А на номинальный ток 630 А

ввод НН на номинальный ток 1000 А


ввод НН на номинальный ток 1600 А

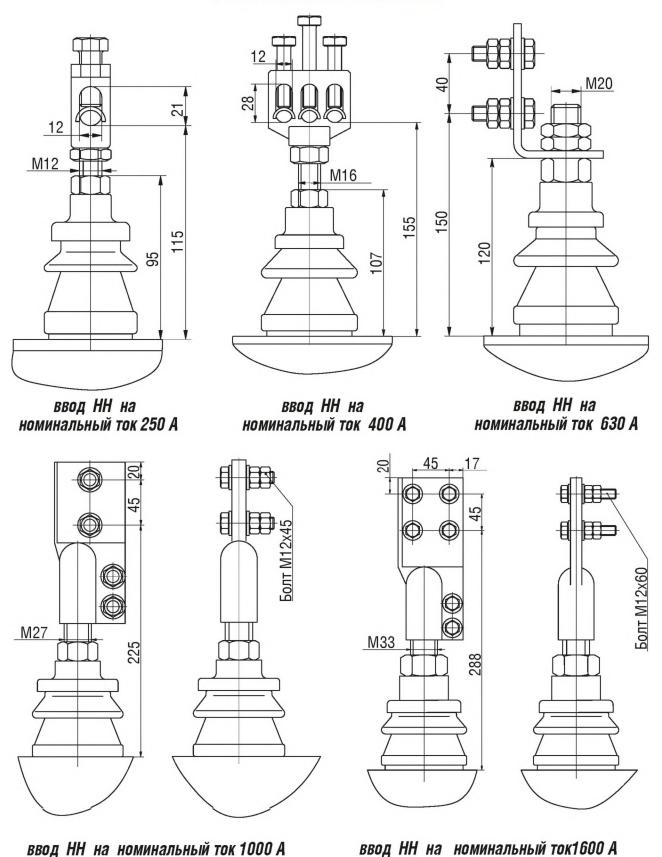
89 M48X3,0


ввод НН на номинальный ток 2500 А

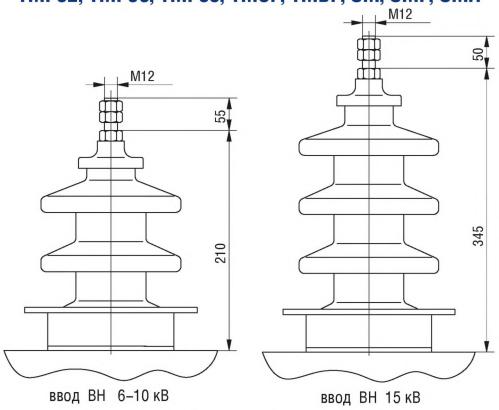
Болт М16х70

ввод НН на номинальный ток 4000 А

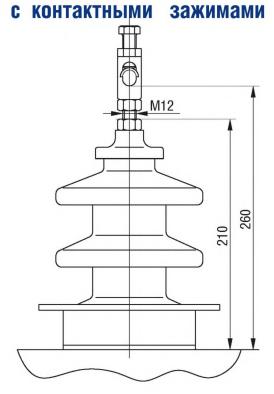
По заказу потребителя вводы НН трансформаторов мощностью 16...630 кВ-А можно комплектовать контактными зажимами.


ввод НН на номинальный ток 250 А

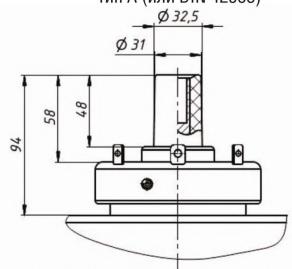
ввод НН на номинальный ток 400 А


ввод НН на номинальный ток 630 А

Вводы НН для трансформаторов серии ТМПН, ТМПНГ


с контактными зажимами

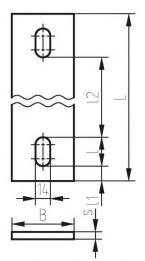
Вводы ВН для трансформаторов серий ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ12, ТМГ21 ТМГ32, ТМГ33, ТМГ35, ТМЭГ, ТМБГ, ОМ, ОМГ, ОМП



Вводы ВН 6; 10 кВ для трансформаторов серии ТМПН, ТМПНГ

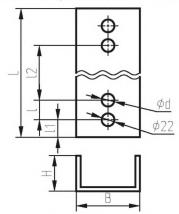
Вводы ВН для трансформаторов ТМГ-630/20-У2, ТМГ-1000/20-У2, ТМГ-1250/20-У2

Штепсельные проходные изоляторы с внешним конусом по EN 50180 тип A (или DIN 42538)



Для присоединения кабелей к изоляторам применяются адапторы: адаптор с изгибом (K)158LR или прямой адаптор (K)152SR.

Размеры отверстий под фундаментные болты

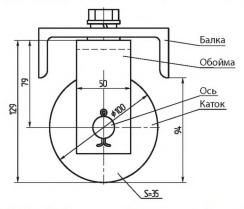

Трансформаторы ТМГ мощностью 16...63 кВ-А, ТМГСУ мощностью 25...63 кВ-А,

Тип трансформатора	Номинальная мощность, кВ-А	L,	I, MM	I1, мм	12, MM	S, MM	В,
ТМГ-16	16	390	22	9	328	8	50
ТМГ-25 ТМГСУ-25	25	390	22	9	328	8	50
ТМГ-40 ТМГСУ-40	40	390	22	9	328	8	50
ТМГ-63 ТМГСУ-63	63	440	22	9	378	8	50

Трансформаторы ТМГ11 мощностью 100...400 кВ·А, ТМГ12 мощностью 250...400 кВ·А, ТМГСУ11 мощностью 100...250 кВ·А

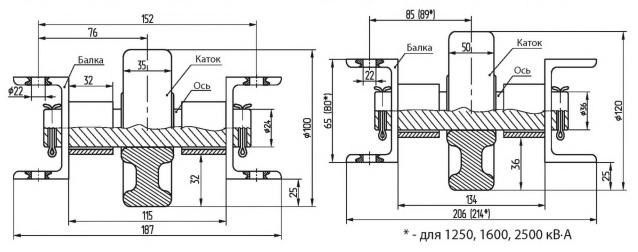
Тип трансформатора	Номинальная мощность, кВ-А	d, MM	L, MM	I, MM	l1, мм	12, MM	Н,	В,
TMГ11-100 TMГСУ11-100	100	22	570	36	24	450	40	80
TMГ11-160 ТМГСУ11-160	160							
TMΓ11-250 TMΓ12-250 TMΓCУ11-250	250	18	680	46	19	550	40	80
TMΓ11-400 TMΓ12-400	400		790	46	19	660	40	80

Трансформаторы силовые масляные


АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ силовых масляных трансформаторов типа ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ21

Значения корректированного уровня звуковой мощности трансформаторов типа ТМГ, ТМГ11, ТМГСУ, ТМГСУ11, ТМГ21 не превышают нормы, установленные ГОСТ 12.2.024-87. Для трансформаторов мощностью не более 100 кВ-А значения корректированного уровня звуковой мощности не нормируются.

Номинальная мощьность трансформатора кВ·А	100	160	250	400	630	1000	1250	1600	2500
Корректируванный уровень звуковой мощь- ности, дБА, не более	59	62	65	68	70	73	75	75	76


РОЛИКИ ТРАНСПОРТНЫЕ

Для трансформаторов 160...400 кВ-А

Для трансформаторов 630 кВ-А

Для трансформаторов 1000...2500 кВ-А

ПЕРЕГРУЗОЧНАЯ СПОСОБНОСТЬ силовых масляных трансформаторов мощностью 16 ... 3200 кВ-А по ГОСТ 14209-85

Допустимые систематические нагрузки не вызывают сокращения нормируемого срока службы трансформатора, так как за продолжительность графика нагрузки обеспечивается нормальный или пониженный против нормального расчетный износ изоляции. Допустимые аварийные перегрузки вызывают повышенный по сравнению с нормальным расчетный износ витковой изоляции, что может привести к сокращению нормированного срока службы трансформатора, если повышенный износ впоследствии не компенсирован нагрузками с износом витковой изоляции ниже нормального.

Максимально допустимые *систематические нагрузки* и допустимые *аварийные перегрузки* масляных трансформаторов определяются в соответствии с табл. 1 и 2.

В таблицах приведены значения K_2 и h для суточного прямоугольного двухступенчатого графика нагрузки трансформатора при различных значениях Ki и θ охл. Для промежуточных значений K_1 и θ охл значение K_2 следует определять линейной интерполяцией.

өохл - температура окружающей среды, °С;

 ${\sf K_1}$ - начальная нагрузка, предшествующая нагрузке или перегрузке ${\sf K_2}$ или нагрузка после снижения ${\sf K_2}$, в долях номинальной мощности или номинального тока:

$$K_1 = S_1 / 3 + 0 = I_1 / I_{HOM}$$

 K_2 - нагрузка или перегрузка, следующая за начальной нагрузкой K_1 , в долях номинальной мощности или номинального тока,

$$\mathbf{K}_2 = \mathbf{S}_2 / \mathbf{3} \mathbf{HOM} = \mathbf{I}_2 / \mathbf{I}_{\mathbf{HOM}}$$

h - продолжительность нагрузки K_2 на двухступенчатом суточном графике нагрузки, ч. В табл. 1 обозначение (+) указывает на то, что для данного режима нагрузки расчетное значение $K_2 > 2.0$, но допускается его любое значение в интервале $1.5 < K_2 < 2.0$.

Табл. 1 – Нормы максимально **допустимых систематических** нагрузок

h			К ₂ пр	и значения	x K ₁ = 0,25	.1,0						
h, ч	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0				
	$\theta_{\text{OXJI}} = -20 ^{\circ}\text{C}$											
0.5	+	+	+	+	+	+	+	+				
1	+	+	+	+	+	+	+	+				
2	+	+	1.99	1.96	1.93	1.89	1.85	1.79				
4	1.70	1.69	1.67	1.66	1.64	1.62	1.60	1.57				
6	1.56	1.55	1.54	1.54	1.53	1.51	1.50	1.48				
8	1.48	1.48	1.47	1.47	1.46	1.45	1.45	1.43				
12	1.41	1.40	1.40	1.40	1.40	1.39	1.39	1.38				
24	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30				
			θ	_{жл} = - 10 °С								
0.5	+	+	+	+	+	+	+	+				
1	+	+	+	+	+	+	+	1.95				
2	1.95	1.92	1.90	1.87	1.83	1.79	1.75	1.69				
4	1.62	1.61	1.60	1.58	1.56	1.54	1.52	1.48				
6	1.49	1.48	1.47	1.46	1.45	1.44	1.42	1.40				
8	1.41	1.41	1.40	1.40	1.39	1.38	1.37	1.36				
12	1.34	1.34	1.33	1.33	1.33	1.32	1.31	1.31				
24	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23				

Продолжение табл. 1

.			К2 пр	и значения	IX K ₁ = 0,25	i1,0		
h, ч	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0
			θ	_{охл} = 0 °C				
0.5	+	+	+	+	+	+	+	+
1	+	+	+	+	+	1.99	1.91	1.8
2	1.86	1.83	1.80	1.77	1.74	1.69	1.64	1.56
4	1.54	1.53	1.51	1.50	1.48	1.46	1.43	1.38
6	1.41	1.40	1.39	1.38	1.37	1.36	1.34	1.31
8	1.34	1.33	1.33	1.32	1.31	1.30	1.29	1.27
12	1.27	1.26	1.26	1.26	1.25	1.25	1.24	1.22
24	1.16	1.16	1.16	1.16	1.16	1.16	1.16	1.16
1			θ_0	_{хл} = 10 °С				
0.5	+	+	+	+	+	+	+	1.84
1	+	+	+	2.00	1.94	1.86	1.76	1.60
2	1.76	1.73	1.70	1.67	1.63	1.58	1.51	1.40
4	1.46	1.44	1.43	1.41	1.39	1.36	1.32	1.25
6	1.33	1.32	1.31	1.30	1.29	1.27	1.24	1.20
8	1.26	1.26	1.25	1.24	1.23	1.22	1.20	1.17
12	1.19	1.19	1.18	1.18	1.17	1.16	1.15	1.13
24	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
			θ_{0}	_{хл} = 20 °С				
0.5	+	+	+	+	+	1.98	1.81	1.00
1	+	1.97	1.92	1.87	1.80	1.71	1.57	1.00
2	1.66	1.63	1.60	1.56	1.51	1.45	1.35	1.00
4	1.37	1.35	1.34	1.32	1.29	1.25	1.19	1.00
6	1.25	1.24	1.23	1.21	1.20	1.17	1.13	1.00
8	1.18	1.17	1.17	1.16	1.15	1.13	1.09	1.00
12	1.11	1.10	1.10	1.09	1.09	1.08	1.06	1.00
24	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			θ_{o}	_{хл} = 30 °С				
0.5	+	+	+	+	1.92	1.76	1.27	_
1	1.89	1.84	1.79	1.73	1.64	1.51	1.12	-
2	1.55	1.52	1.48	1.44	1.38	1.29	1.02	-
4	1.28	1.26	1.24	1.21	1.18	1.21	0.97	-
6	1.16	1.15	1.13	1.12	1.09	1.05	0.95	-
8	1.09	1.08	1.08	1.06	1.05	1.02	0.94	-
12	1.02	1.02	1.01	1.00	0.99	0.97	0.92	_
24	0.91	0.91	0.91	0.91	0.91	0.91	0.91	_

h, ч		К ₂ при значениях К ₁ = 0,251,0												
11, 7	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0						
	$\theta_{\text{ox},\pi} = 40 ^{\circ}\text{C}$													
0.5	+	+	1.94	1.84	1.69	1.26	_	_						
1	1.75	1.70	1.64	1.56	1.44	1.08	_	_						
2	1.43	1.39	1.35	1.30	1.21	0.96	_	_						
4	1.17	1.15	1.13	1.09	1.04	0.89	_	_						
6	1.06	1.05	1.03	1.01	0.97	0.86	-	_						
8	1.00	0.99	0.98	0.96	0.93	0.85	_	_						
12	0.93	0.92	0.91	0.90	0.88	0.84	_	_						
24	0.82	0.82	0.82	0.82	0.82	0.82	_	_						

Табл. 2 – Нормы допустимых аварийных перегрузок

h u			К 2 при	значениях	K ₁ = 0,25 -	- 1,0				
h, ч	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0		
			θ	_{охл} = - 20 °	C					
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		
2	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		
4	1.90	1.80	1.80	1.80	1.80	1.80	1.80	1.80		
6	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70		
8	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70		
12	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60		
24	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60		
$\theta_{\text{ox}\pi} = -10^{\circ}\text{C}$										
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		
2	2.00	2.00	2.00	2.00	2.00	2.00	1.90	1.90		
4	1.80	1.80	1.80	1.80	1.80	1.70	1.70	1.70		
6	1.70	1.70	1.70	1.60	1.60	1.60	1.60	1.60		
8	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60		
12	1.60	1.60	1.50	1.50	1.50	1.50	1.50	1.50		
24	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50		
				$\theta_{\text{ox},\text{I}} = 0 ^{\circ}\text{C}$						
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00		
2	2.00	2.00	2.00	1.90	1.90	1.90	1.90	1.80		
4	1.70	1.70	1.70	1.70	1.70	1.70	1.60	1.60		
6	1.60	1.60	1.60	1.60	1.60	1.50	1.50	1.50		
8	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50		
12	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50		
24	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50		

Продолжение табл. 2

.			К 2 при	значениях	K ₁ = 0,25	1,0	продолж	ние таол. 2
h, ч	0.25	0.4	0.5	0.6	0.7	0.8	0.9	1.0
				θ _{οχπ} = 10°C				
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
1	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
2	2.00	2.00	2.00	2.00	2.00	2.00	1.90	1.90
4	1.80	1.80	1.80	1.80	1.80	1.70	1.70	1.70
6	1.70	1.70	1.70	1.60	1.60	1.60	1.60	1.60
8	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60
12	1.60	1.60	1.50	1.50	1.50	1.50	1.50	1.50
24	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
				$\theta_{\rm ox, I} = 20 ^{\circ}\text{C}$				
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
1	2.00	2.00	2.00	2.00	2.00	2.00	1.80	1.80
2	1.80	1.80	1.80	1.80	1.70	1.70	1.70	1.60
4	1.50	1.50	1.50	1.50	1.50	1.40	1.40	1.40
6	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.30
8	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
12	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
24	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
				$\theta_{\rm oxn} = 30 ^{\circ}$				
0.5	2.00	2.00	2.00	2.00	2.00	2.00	2.00	1.90
1	2.00	2.00	2.00	2.00	1.90	1.90	1.80	1.70
2	1.80	1.70	1.70	1.70	1.60	1.60	1.50	1.40
4	1.40	1.40	1.40	1.40	1.40	1.30	1.30	1.30
6	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.20
8	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
12	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
24	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
				$\theta_{\text{ox}} = 40 ^{\circ}\text{C}$				
0.5	2.00	2.00	2.00	2.00	2.00	2.00	1.90	1.70
1	2.00	1.90	1.90	1.90	1.80	1.70	1.60	1.40
2	1.60	1.60	1.60	1.50	1.50	1.40	1.30	1.30
4	1.30	1.30	1.30	1.30	1.20	1.20	1.20	1.20
6	1.20	1.20	1.20	1.20	1.20	1.20	1.10	1.10
8	1.20	1.10	1.10	1.10	1.10	1.10	1.10	1.10
12	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
24	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10

Опросный лист силового масляного трансформатора

1	Тип		
^	(ТМГ, ТМЭГ, ТМБГ и т. д.)		_
2	Номинальная частота		Гц
3	Номинальная мощность		кВ∙А
4	Номинальное напряжение стороны ВН		кВ
5	Номинальное напряжение стороны НН		кВ
^	(в режиме холостого хода)		
6	Способ, диапазон и ступени регулирования напряжения на стороне ВНПБВ	±2x2,5	0/_
	(если иное, то указать в п. примечания)	12,72,0	/0
7	Напряжение короткого замыкания при 75 °C (±10%)		%
8	(указывается при отличии от стандартного) Потери холостого хода (+15%)		Вт
Ü	(указываются при отличии от стандартного)		ы
9	Потери короткого замыкания при 75 °C (+10%)		Вт
10	(указываются при отличии от стандартного)		
10	Схема и группа соединения обмоток		
11	Климатическое исполнение и категория размещения		
	(У1, ХЛ1, УХЛ1, Т1 и т.д.)		
12	Степень защиты		
	(указывается если отлично от IP00)		
13	Габаритные размеры (max):		
	(при отличии от указанных в каталоге продукции)		
	длина		MM
	ширина		MM
	высота		MM
14	Масса трансформатора (+10%)		ΚГ
15	Конструктивные особенности:		
Пр	имечания:		
.,			
	нтактное лицо для проведения технических переговоров:		
тел	ıефон:, Ф.И.О		
_			
СT	рана (город) поставки трансформатора		